Ideal (ring theory)

In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. The ideal concept allows the generalization in an appropriate way of some important properties of integers like "even number" or "multiple of 3".

For instance, in rings one studies prime ideals instead of prime numbers, one defines coprime ideals as a generalization of coprime numbers, and one can prove a generalized Chinese remainder theorem about ideals. In a certain class of rings important in number theory, the Dedekind domains, one can even recover a version of the fundamental theorem of arithmetic: in these rings, every nonzero ideal can be uniquely written as a product of prime ideals.

An ideal can be used to construct a quotient ring in a similar way as a normal subgroup in group theory can be used to construct a quotient group. The concept of an order ideal in order theory is derived from the notion of ideal in ring theory.

A fractional ideal is a generalization of an ideal, and the usual ideals are sometimes called integral ideals for clarity.

Contents

History

Ideals were first proposed by Dedekind in 1876 in the third edition of his book Vorlesungen über Zahlentheorie (English: Lectures on Number Theory). They were a generalization of the concept of ideal numbers developed by Ernst Kummer. Later the concept was expanded by David Hilbert and especially Emmy Noether.

Definitions

For an arbitrary ring (R, +, ·), let (R, +) be the underlying additive group. A subset I is called a two-sided ideal (or simply an ideal) of R if

  1. (I, +) is a subgroup of (R, +)
  2. for all x in I and for all r in R, a·r and r·a are in I.

Equivalently, an ideal of R is a sub-R-bimodule of R.

A subset I of R is called a right ideal of R if[1]

  1. (I, +) is a subgroup of (R, +)
  2. xr is in I for all x in I and all r in R

Equivalently, a right ideal of R is a right R-submodule of R.

A subset I of R is called a left ideal of R if

  1. (I, +) is a subgroup of (R, +)
  2. rx is in I for all x in I and all r in R

Equivalently, a left ideal of R is a left R-submodule of R.

In all cases, the first condition can be replaced by the following

1.′ I is non-empty and for all x, y in I, xy is in I.[2]

The left ideals in R are exactly the right ideals in the opposite ring Ro and vice versa. A two-sided ideal is a left ideal that is also a right ideal, and is often called an ideal except to emphasize that there might exist single-sided ideals. When R is a commutative ring, the definitions of left, right, and two-sided ideal coincide, and the term ideal is used alone.

If p is in R, then pR is a right ideal and Rp is a left ideal of R. These are called, respectively, the principal right and left ideals generated by p. To remember which is which, note that right ideals are stable under right-multiplication (IR ⊆ I) and left ideals are stable under left-multiplication (RI ⊆ I).

The connection between cosets and ideals can be seen by switching the operation from "multiplication" to "addition"

We call I a proper ideal if it is a proper subset of R, that is, I does not equal R. The ideal R is called the unit ideal.[3]

Motivation

Intuitively, the definition can be motivated as follows: Suppose we have a subset of elements Z of a ring R and that we would like to obtain a ring with the same structure as R, except that the elements of Z should be zero (they are in some sense "negligible").

But if z_1=0 and z_2=0 in our new ring, then surely z_1+z_2 should be zero too, and r z_1 as well as z_1 r should be zero for any element r (zero or not).

The definition of an ideal is such that the ideal I generated by Z is exactly the set of elements that are forced to become zero if Z becomes zero, and the quotient ring R/I is the desired ring where Z is zero, and only elements that are forced by Z to be zero are zero. The requirement that R and R/I should have the same structure (except that I becomes zero) is formalized by the condition that the projection from R to R/I is a (surjective) ring homomorphism.

Examples

Ideal generated by a set

Let R be a ring.

Any intersection of left (resp. right, resp. two-sided) ideals of R is again a left (resp. right, resp. two-sided) ideal of R. Therefore, if X is any subset of R, the intersection of all left (resp. right, resp. two-sided) ideals of R containing X is a left (resp. right, resp. two-sided) ideal I of R, said to be generated by X. I is the smallest left (resp. right, resp. two-sided) ideal of R containing X.

If R is commutative, the left, right and two-sided ideals generated by a subset X of R are the same, since the left, right and two-sided ideals of R are the same. We then speak of the ideal of R generated by X, without further specification. However, if R is not commutative they may not be the same.

The left (resp. right, resp. two-sided) ideal of R generated by a subset X of R is the set of all finite sums of elements of R of the form ra, where rR and aX (resp. ar, where rR and aX, resp. rar′, where r,r′R and a ∈ X). That is, the left (resp. right, resp. two-sided) ideal generated by X is the set of all elements of the form

r1a1 + ··· + rnan (resp. a1r1 + ··· + anrn, resp. r1a1r′1 + ··· + rnanr′n)

with each ri,r′i in R and each ai in X.

By convention, 0 is viewed as the sum of zero such terms, agreeing with the fact that the ideal of R generated by ∅ is {0} by the previous definition.

If aR, then the left (resp. right, resp. two-sided) ideal of R generated by {a} is denoted by Ra (resp. aR, resp. RaR). Ra is the set of elements of R of the form ra for rR. An analogous statement holds for aR, but not for RaR.

If an ideal I of R is such that there exists a finite subset X of R (necessarily a subset of I) generating it, then the ideal I is said to be finitely generated.

Example

Types of ideals

To simplify the description all rings are assumed to be commutative. The non-commutative case is discussed in detail in the respective articles

Ideals are important because they appear as kernels of ring homomorphisms and allow one to define factor rings. Different types of ideals are studied because they can be used to construct different types of factor rings.

Two ideals \mathfrak{i}, \mathfrak{j} are said to be comaximal if x + y = 1 for some x \in \mathfrak{i} and y \in \mathfrak{j}.

Properties

Ideal operations

The sum and product of ideals are defined as follows. For \mathfrak{a} and \mathfrak{b}, ideals of a ring R,

\mathfrak{a}+\mathfrak{b}:=\{a+b \,|\, a \in \mathfrak{a} \mbox{ and } b \in \mathfrak{b}\}

and

\mathfrak{a} \mathfrak{b}:=\{a_1b_1+ \dots + a_nb_n \,|\, a_i \in \mathfrak{a} \mbox{ and } b_i \in \mathfrak{b}, i=1, 2, \dots, n; \mbox{ for } n=1, 2, \dots\},

i.e. the product of two ideals \mathfrak{a} and \mathfrak{b} is defined to be the ideal \mathfrak{a}\mathfrak{b} generated by all products of the form ab with a in \mathfrak{a} and b in \mathfrak{b}. The product \mathfrak{a}\mathfrak{b} is contained in the intersection of \mathfrak{a} and \mathfrak{b}.

The sum and the intersection of ideals is again an ideal; with these two operations as join and meet, the set of all ideals of a given ring forms a complete modular lattice. Also, the union of two ideals is a subset of the sum of those two ideals, because for any element a inside an ideal, we can write it as a+0, or 0+a, therefore, it is contained in the sum as well. However, the union of two ideals is not necessarily an ideal.

Important properties of these ideal operations are recorded in the Noether isomorphism theorems.

Ideals and congruence relations

There is a bijective correspondence between ideals and congruence relations (equivalence relations that respect the ring structure) on the ring:

Given an ideal I, let x ~ y if x-y ∈ I.

Conversely, given a congruence relation ~, let I = {x : x ~ 0}.

See also

References

  1. See Hazewinkel et. al. (2004), p. 4.
  2. In fact, since R is assumed to be unital, it suffices that x + y is in I, since the second condition implies that −y is in I.
  3. Lang 2005, Section III.2
  • Lang, Serge (2005), Undergraduate Algebra (Third ed.), Springer-Verlag, ISBN 978-0387220253 
  • Michiel Hazewinkel, Nadiya Gubareni, Nadezhda Mikhaĭlovna Gubareni, Vladimir V. Kirichenko. Algebras, rings and modules. Volume 1. 2004. Springer, 2004. ISBN 1-4020-2690-0